
ýENTATION PAGE. 0A t~a 07C4411AD-A284 362 bwetwwao

.PR Al 3.IPR YEADDTSCVERED _L)

15 JUL 199 Fia . 3ýLL'z6 'Z
A. TithE AND SUSTITU S. FUNDING NUMBERS

SIGNET-SOFTWARE TOOLS FOR SIGNAL IDENTIFICATION USING

F49620-89--0049
6. AUTHOR(S)

Leong, H.M.F.
1eins A.S. or~

7. PERFORMING*ORGAN! AT!ON. NAME(S) AND ADD -) S. PERFORMING ORGANLZATION

SAM TECHNOLOGY, INC. SEPEP 0N8M199
101 Spear Street, Suite 203
San Francisco, CA 94105 F

S. SPONSORING / MONITORING AGENCY HAME(S) AND AOORESS(ES) 10. SPONSCRING/MONITORIN6

Capt. Steven SuddarthiAEC EOTHME

AFOSR/NM
Directorate of 1I~thematical and Information Sciences
Bldg. 410 AEQSR-TR. 9 4 04 77
Boiling AFB, DC 20332-6448 _ ___________

11. SUJPPLEMENTARY N.DTES ItOriginal Con=8=5 color

Platosi All DIC "eproduct-
ions wrill be In black and

122. DISTPJBUTID~iAVAILAGILITY STATEMENT j12b. DISTRIBUTION CODE

APPROVED FOR PUBLIC RELEASE:I
DISTRIBUTION UNLIMITEDL

S We are developing a software signal processing workbench named SIGNET that simplifies exploratory
analysis of multi-channel time series data. We have demonstrated, for the first time, the feasibility of
building a signal- processing system around an object-oriented database (OODD). This provides a graphical
means for users to czeate, compare, and manirulate complex data structures while mahitaining system wide
understanding of these structures. This understanding enables the system to provide databast'. qp-iers by
content, data subset cxtraction with retention of important relationships, traceable self-documeniting data,
insurance that only appropriate datz. is fed to signal processing functions, etc. The end result is that users
have a high degree of flexibility to manipulate data while data integfity and Y'aliciity is protected Over the
course of the project, we completed a detailed system design, evaluated existing daitabase technologies and
chose an 00DB3 upon which to build SIGNET, We built a prototype that impiewentetil tile essential
framework of SIGNTEJ and provided a platform with which to test the basic technical issues underlying our
design. Signal review and exploratory signal analysis software was enhi-nced f-Or iaooxporation into the
SIGNET framework. We have also tested and analyzed the prototype and have found that the major
drawback to our initial dsign was the speed of system response. The major f3c.-tors causinig tUs have beenl
identified and speed-up solutions have been designed. We coniclude ihat1 00DB technology provides aC.
powerful and appropriate framework wo wodel the data and processes tbat -are used in exploratury
multidimensional signal -processiug- applications, We art. dekerxnining thc commercial viabiliy) of
developing the prototype into a full crommercial system.OFACE

14. SUni Ed IERMbS Ina Lil,1. 36I&E f A

Signal Processing Softwai:-. Neural Networks ~.PJtC)

17. SECURITY CLASSIFICATION 1.SICURITY CLA55IFKcATI08 19. S KC ILl AiY QCA S iFI C~A I i_1 7:7i TWA-T FEN_ 0OF A _SSI T Z ' C1
OF RIPOFST OF THIS1 PArGE OFJ AbSTiRACT

Unclassified rUnclassif ied Un cIa ss if ied U n 1iiD ý`te d

pISCLAIMEI NOTICE

\ Z .

THIS DOCUMENT IS BEST

QUALITY AVAILABLE. THE COPY

F URU.NtISHE TO 1 HTI COluNTAINED
A SIGNIFICANT NUMBER OF

COLOR PAGES WIICH DO NOT

REPRODUCE LEGIBLY ON BLACK

AND WHITE MICROFICHE.

SIGNET-SOFTWARE TOOLS FOR SIGNAL IDENTIFICATION

USING NEURAL NETWORKS

FINAL TECHNICAL REPORT

AFOSR Contract F49620-89-C-0049
1 MAR 89 to 30 APR 94

PREPARED FOR APPROVED BY

Captain Steven Suddarth
Directorate of Mathematical and Infonnation Sciences
Building 410 __-----___

Boiling AFB, D.C. 20332-6448 Alan Gevins, President
SAM Tecnmology

The views and conclusions in this document are those of the authors and should not be
interpreted as necessarily representing the official policies or endorsements, either
expressed or implied, of the Air Force Office of Scientific Research or the U.S.
Government.

E3• 12d'•'

' I •, [2 [;O

.. / I. .

S .',- .• o

194-291025 DI ULT

MAR89-APR94 SAMT-I.NOLOOY F49620-89-C-0049

TABLE OF CONTENTS

BACKGROUND .. 4
The Commercial Need ... 4
Object Oriented Technology ... 4

SUMM ARY OF ACCOMPLISHMENTS ... 6
OVERVIEW OF THE SIGNET FRAMEW ORK ... 6
THE SIGNET DATA MODEL .. 7
SIGNET USER INTERFACE, PROTOTYPE DEMONSTRATION ..

Conclusiors ... 12
EVALUATION AN D EXTENSION OF THE PROTOTYPE ... 13

Code Refireemeut for Speed .. 13
Software Ports .. 13

Dnta Reviewer ... 13
Data SuLdivider .. 13
EXPLORE ... 14

Intcgration with 3-D Visualization Software .. 14
OBJECT-ORIENTIED DATABASE EVALUATION .. 1 4

Description of Issues in Ta.ole I ... 16
CONCLUSIONS 17
REIfERENCES .. 17
APPENDIX A: Figures ... 18

:aamlreports/softwarefinal.txt -3- Final Technical Report

"MAR89-APR94 SAM TECaNOLOGY F49620-89-C-0049

SIGNET-SOFTWARE TOOLS FOR SIGNAL IDENTIFICATION
USING NEURAL NETWORKS

FINAL REPORT

Harrhon Leong, Principal Investigator
Alan Gevins, President

BACKGROUND

The Commercial Need

Despite the variety of scientific software commeicially avai",blc, there is no complete
environment that integrates the full range of tools necessary for exploring multidimensional
time series data. Currently, if a sophisticated analysis technique such as neural-network
pattern classifier is to be used, data must be selected, extracted, converted, and imported to
a specialized analysis package. Selecting and converting volumes of data between various
formats required by different stages of analysis is error prone and can be prohibitively
tedious and inefficient. While neural networks are potentially powerful tools for adaptive
feature extraction and signal recognition, these methods must be integrated with sequences
of application specific signal processing and exploratory decision making operations to
effectively pinpoint the most promising signal processing approaches and traisformations.
Thus, all the tools used in a data analysis system need to be built around a flexible,
interactive database system that facilitates data manipulation, and allows new analysis
techniques to be seamlessly integrated into the software, Sin .most pattern-recognition
research requires quick and convenient access to large quantities of raw data and results, a
signal processing database must ie implemented that permits researchers to track these data
withomt needing to know complicated directory structures or file names, or whether a
specific result has been calculated in advance. Such record.keeping becomes a particularly
onerous task as the number of files and algorithmic variations expands. Ideally the system
would understand the intrinsic relationships in the database and be capable of manipulating
the data while accounting for these relationships and keeping them intact.

Providing this ideal is the central framework of a software signal-processing workbench
we are developing named SIGNET. SIGNET provides specific functions for performing
classification analyses on noisy, multi-channel, spatio-temporal data using neural
networks. it will have a graphical environment with powerful visualization tools and a
library of signal-transformation functions for exploring the characteristics of this kind of
data. SIGNET will be the first system of its kind to simplify exploratory signal processing
by providing powerful object-oriented database-management capabilities to organize,
access, and document large signal data sets, intermediate results, and signal-processing
procedures.

Object Oriented Technology

We chose to implement SIGNET using a full complement of object-oriented software
technologies: the C++ language (Stroustrup, 1991); Object Interface, a user-interface
toolkit; and Objectstore, an object-oriented database. This choice was based primarily on
the idea that with this technology, complex software systems can be built which remain
manageable and modifiable, a major problem with conventional software-development
techniques. Over the long run, we would save in development costs and costs of
maintaining and enhancing the software system. Many books and articles in newsletters,
journals, and computer related magaiines have expounded the reasons for this, especially

/samrreportsisoftware/final.txt -4- Final Technical Report

MAR89-APR94 SAM TECHNOLOGY F49620-89-C-0049

for large, complex software systems (see for example Eckel, 1989 and Rumbaugh ct al.,
1991). A major difference between conventional programming and the object-oriented
approach is that, in the object-oriented approach, data is bound tightly to the functions that
can validly operate on the data. This minimizes invalid data operations and permits more
sophisticated data abstraction, because the data elements, called objects, are defined both
by the structure of their data and by specialized functionality that operates on that data. The
impact of this idea oil improving software development is compounded by powerful
techniques to e:, ablish relationships between objects. These techniques allow
programmers to literally create high-level, application-spe(,"2c extensions of the language.
The end result is that programming complexity can be decreased, errors can be contained,
and software becomes much more expandable.

A drawback to the object-oriented approach is that using a conventional file system or
database to persistently store objects is more difficult. The programmer must break up the
objects and relationships between them in such a way that they can be stored in or
recenstructed from a collection of inter-related data files or, in the case of a relational
database, data tables. This is already a serious problem in conventional programming; a
sizable portion of conventional programs is devoted to storing and retrieving data.
Relationships between data must be encoded in the software rather than the data itself.
Hence, maintaining the integrity of data and relationships between the data remains an
insistent, time consuming task that grows exponentially with the complexity of the
software application. This would be a serious roadblock for the SIGNET project.
Exploratory, multi-channel signal processing involves several transformations of the data,
often with input from several sources of data. The result is a complex web of inter-related
networks of elemental processing functions used to generate these data. Clearly, the way
in which these processing functor.s arc conncted is at least as important i, a signal-
processing scheme as the functions themselves. It is then essential to store these
relationships. Graphical user interfaces also pressure the need to store relationships
between data structures. Saving the state of a user's workspace involves keeping track of
several views of the data displayed in nested graphical windows which may be sensitive to
1he context in which they were brought into view.

Nrior to this project, we had developed a proprietary data format and accompanying data
access software library which provided self documenting data, insuring data integrity and
uniformity in data access by our application software. This was an important step.
However, the system has no provisions to store and control interdependencies between
data sets. Instead, data relaticon.hips mIst be enrcdodd in the application software, in the
names of data files, and in the structure of UNIX directory hierarchies. This results in an
overwhelming need for good organizational skills on the part of the user; with complex
analyses producing many inter-related data files, it is easy to lose track of the location of
and interdependencies between sets of data. During the course of this project, it came to
our attention that the technology we needed to resolve this problem could be bought in the
form of a commercial object-oriented database. It appeared that this would be the most
cost effective and efficient means of achieving the goals cf the project.

Object-oriented databases have been developed to address the need for a seamless way to
..t;orc relationships between data entities as well as the data itself. Hence, software that
must access and manipulate information consisting of the relationship between two or
more data elements can do so at the level of the information N ,hereas, with conventional
tools or a relational database, the software must access the data at a level underneath the
target information and piece together the information desired. For example, the primary
computing endeavor in which 00DB technology has been successfully applied is in
computer aided design applications where the inter-relationshi,' between parts of an entity,
such as an automobile, are as important or more important than the proper-ties of the

/sarn/reports/sofiware/final. txt -5- Fial Ieclhir cal Report

MAR89-APR94 SAM'I2CNOLDGY F49620-89-C-0049

component parts. The database system we chose, Objectstore from Object Design Inc.,
provides C++ language enhancements and software libraries with which relationships
between objects can be expressed directly and storing data is virtually transparent to the
programmer. With the data storage problem resolved, programmers can almost
exclusively focus their efforts on developing run-time coCie. However, these benefits do
not come without cost. The major cost to us was that we needed to develop an object-
oriented model of our signal-processing approach which encapsulated both the form of our
data and the functions used to manipulate and transform it. Another primary cost is speed
of data access. This concern increases with the complexity of inter-relationships between
data. Hence, in our evaluation of OODBs, we placed a premium on speed. (Our
evaluation of object-oriented databases is discussed below.)

SUMMARY OF ACCOMPLISHMENTS

Over the couise of this project, we have succeeded in demonstrating, for the first time, the
feasibility of building a signal-processing system around an object-oriented database
(OODB) which provides graphical means for users to create, compare, and manipulate
complex data structures while maintaining system wide understanding of these structures
so that, in any given context, the appropriate form of data is used or extracted from what is
given.

Specifically, we completed a detailed system design; evaluated existing database
technologies and chose an OODB upon which to build SIGNET; built a prototype that
implemented the essential framework of SIGNET and provided a framework with whicht-, t the ba1sic ;' d , su,.ounderlying .. c. *Iod -_ _f. the pro,
to determine how system response performance could be improved; and enhanced signal
review and exploratory signal analysis software, preparing it for incorporation into the
system framework. We conclude that OODB technology provides a powerful and
appropriate framework to model the data and processes that are used in exploratory
multidimensional signal-processing applications. We are determining the commercial
viability of developing the prototype into a full commercial system.

Below, structural details underlying SIGNET software will be described. The user
interface will be described through a demonstration of usirg the system to do a pattern
recognition study of electric signals from the brain. We will discuss the design changes
needed to improve the core operations of SIGNET. We will describe the major software
tools for multi-channel exploratory signal analysis that we have prepared for integrating
into the SIGNET framework. Finally, we include a report of our evaluation of candidate
commercial OODBs.

OVERVIEW OF THE SIGNET FRAMEWORK

The SIGNET framework has two primary components: a database browser, and an
aaalysis manager. The database browser enables the user to examine and edit hierarchical
data structures and specify and extract specific subsets of data for further analysis.
Relationships among data elements are shown by both a hierarchical spatial arrangement
and color-coding. Data is placed into the database by importing data from the UNIX file
system or by executing a SIGNET anI.ysis module. Data created by a single import
operation or module execution is viewed as an atomic entity that will be called a datasct.
The analysis manager allows the user to construct and execute signal-processing
procedures. A signal-processing procedure is constructed by graphically linking together

!samlreportslsortwarclfinal.txt -6- Final Technical Re~port

MAR89-APR94 SAMTECHNOLOCGY F49620-89-C-0049

icons representing analysis modules which embody steps of a signal-proccssing algorithm.
The links, called pipes, represent communication channels for directing the output of one
analysis module into the input of another module. In a completely specified signal
processing procedure, one or more analysis modules would have graphical input ports into
which icons representing datasets would be placed. Analysis modules need not be given
data in an exact form; the correct form is constructed from the input data.

Implementing the framework involved designing, coding, and testing:

1. a generic data model which could be used to represent multi-channel time series, image
data, and functions that operate on these data;

2. basic data-querying operations defined on the generic data model including comparing
overall structure of the data, comparing values of specific data elements, and extracting
subsets of data while maintaining the correct relationships between elements of the
extracted data;

3. a graphical data representation tat gives imrnediato views of the relationships within
the data and facilitates constructing queries and extracting data subsets;

4. data-structures and (unctions for recording amud displaying the processing heritage
which created a datasct;

5. graphical tools with which schematics of signal-processing algorithms can be
designed, fed with appropriate parameters and data, and executed;

6. the basic elements of an automated pattern classification analysis system based or,
neural networks; and

7. a software library that expedites data communication between thc, SIGNET database,-
programs built on this database, and software external to the system.

THE SIGNET DATA MODEL

Considering the data-processing system as a whole, user data can be viewed as one large
conglomeration of textual, numeric, and binary data. The entire conglomerate of user data
in the SIGNET system is known as the "global dataspace". It is nccessary to partition this
conglomerate to provide a user with a comprehensible view into ihow Uie data is structured
and distributed. The datasplce is logically broken into "datasets". Each dataset is created
by one discretc data import operation or one execution of an analysis module such as a
module for computing signal features- Data within each dataset is organized as a
hierarchical structure. Each dataset contains a description of it's hierarchy and the storage
type(s) of values represented at each level within the hierarchy.

For example, consider the situation of a simple electrophysiological experiment iivolvirg
recordings of the electroencephalogram (EEG). Several sensors are placed on a subject's
scalp and these record the electric potential fields produced on the scalp by active brain
cells. Recordings are made in a sequence of discrete trials where, during each trial, the
subject is visually stimulated by a trial- specific pattern to which a button must be pressed
when the subject detects a special pattern. This simple situation could have the following
hierarchical structure (simplified for illustrative purposes): experiment, subject, trial,
stimulus, response type, response time, sensor, timeseries. The corresponding data types

isam /reports/software/final.txt -7- Final Technical Report

MAR89-APR94 SAMT1TCHNOLJGY F49620-89-C-0049

could be these: textual (experiment name), textual (subject name), integer ktrial number),
bit-map (stimulus pattern), textual (press or no press), integer (milliseconds since start of
trial), textual (sensor name), and floating point (electric potential values). A graphical
exposition of this structure will clarify the concepts discussed here and will be presented in
the next section where we will present a pictorial demonstration of the software,

This self-describing and self-documenting data model along with supporting functions for
comparing and manipulating data structures allows a given analysis module to accept many
possible formats of input data. When the module beoins running, iHput data is read from a
dataset and the structure of the data can be adapted to a structure that tie module can operate
on. This is different from existing systems where the programmer must know the exact
structure of the input data while developing the software in which case the data formats
that can be represented and analyzed by tie system are highly constrained. This capability
of the SIGNET data model simplifies applications development and the end-user's
environment by alleviating the need to worry about compatibility of data formats.

The SIGNEI' data-modeling system also simplifies applications development by providing
a programmer's interface which closely resembles the array syntax of common
programming languages such as "C", FORTRAN and Pascal. It gives a simple, intuitive
syntax to index into the database.

Finally, the SIGNET data-modeling system provides a database query mechanism which
uses the exact same syntax as the data model itself. Relational databases, as with most
other database systems, require the user to build complex query expressions which look
nothing like the syntax used to build data within the system. SIGNET uses the exact same
expression syntax for query expressions as it does for modeling data. Hence. users need
not learn an arcane database query language to examine the database and extract subsets of
data that are of interest.

SIGNET USER INTERFACE. PROTOTYPE DEMONSTRATION

The prototype we have created will be demonstrated by a series of figures which show
various stages, of working with the system. The contedt of the demonstration is a user
who already has multx-channel time series data stored in several files ard wishes to analyze
these data to find features of the data that have distinguishable characteristics between
exoerimental condin:s.!J, (classes of signal data). The demonstration will guide the reader
through the process of iýxiýKrting data, browsing the structure of these data, merging data
into larger data sets, extnecg subsets of data, querying the database, displaying time
series data graphicalhy, p,'oc-;ssing the data to extract signal features, and analyzing
patterns in these features widI, a neural network.

We will use data irom our study of the neuroelectric signals of prolonged mental work
performed in 1984 (Gevins et al., 1988, 1990). For 14 hours, five Air Force test pilots
performed several sessions of a battery of five well practiced tasks. In one of the tasks,
the pilots were required to view a series of digits presented one at a time, remember the last
three digits shown, and, in response to each stimulus presentation, produce a finely
controlled isometric finger pressure proportional to the earliest of the three digits. In 20%
of the trials, the most recent digit matched the earliest of the three in which case subjects
were to withhold response. In our demonstration, we will use electroencephalogram
signals (EEGs) recorded during these trials to distinguish between three stages of fatigue;
the stages will be defined by separating the 14 hours into three sequential periods. EEGs
were recorded with 27 or 51 electrodes placed on the scalp. Eight to ten runs of 150

Isamlreportslsoftware/final. ixt -8- Final Technical Report

MAR89-APR94 SAM TECI INOLOGY F49620-89-C-0049

trials each were performed interspersed throughout the 14 hours. We will use a small
subset of these data.

In this demonstration, the following system capabilities will be illustrated: importing data;
constructing a signal processing schematic; getting data in and out of processing modules;
graphically displaying the internal structure of data; merging data sets; graphically tracing
relationships among data; querying the database; extracting a subset of data; plotting
waveform data; performing a classification analysis; examining intermediate results; and
examining the processing heritage of a dataset.

Figure 1 (all figures appear in Appendix A) shows the opening screen to the system. There
is a "Top-level Menu", which provides access to the basic tools of the system, and a
"Global Data Window" which is used to display all data sets in the database.

Figure 2 shows the process of setting up a data-processing session, specifically importing
data into the system. From the main menu, "New PE Palette" was selected, generating a
window which contains icons for the data-processing functions available in the system,
i.e., "Processing Elements" or PEs; the window appears on the lower right of the figure.
Choosing "New DPS" from the main menu generates a window within which a data-
processing schematic (DPS) can be designed. In this case, the schematic is trivial and
consists of only the import function. In general, a schematic is built by using a mouse to
select and drag copies of PE icons into the DPS window and linking up inputs and
outputs. An input is represented by a small square, a "placeholder", linked to the upper,
green tab on the PE icon while an output is represented by a placeholder linked to the
lower, orange tab. Inputs and outputs are linked by simply using a mouse to drag one
placeholder over another. The import PE has only output since it gets its input external to
tihe system. To specify the input source, the mouse is depressed over the import PE icon
and this brings up a "dialog box" in which the user can specify a file to import and launch
the import operation. In general, depressing the mouse over a PE icon brings up a "dialog
box" in which parameters governing the behavior of the PE can be set and the processing
can be launched.

Note that importing would normally be performed once when setting up the system with
an existing set of data. From then on, this data and any results derived from it would be
stored in SIGNET's database, obviating the need to reference data by file name.

The software i3 built around a three-button mouse. In general, the left-most mouse button
Is usc to s•,Ict and1U move graphical entities, select ioeuu iteills, or launch processing; the
middle mouse button is used to extend selections; and the right-most button is used to call
up menus of actions. From hereon, when referring to mouse actions, exactly which
buttons are used will be implied by context.

Figure 3 shows the result of importing three files to the system and browsing the structure
of one of them, "late". Data of the fat~gue study was stored in several files: one for each
subject, each task, and each run. Three of these runs were imported, all from subject 7.
The results of the imports appear as data sets in the "Global Data Window". The data sets
have been named "early", "middle", and "late" to imply the interval of the 14 hour testing
period to which they correspond. The window labeled "Unconstrained Browser" was
brought up by selecting the "New Browser" option from the 'Top-level Menu". The
mouse was used to drag the "early" data set icon from the "Global Data Window" into the
Browser window. The Browser makes a copy of the data set and displays its structure in
the left panel of the Browser window, the "browsing" area. The "browsing" area is for
browsing, modifying, or creating data sets. The right panel is for displaying the results of
queries (illustrated below), the "data set holding" area. Alternatively, a data set can be

Isani/reportslsoftwarc/final.txt .9- Final Technical Report

I I

MAR89-APR94 SAM TECHN0LGY F49620-89-C-0049

browsed directly by clicking the mouse over its icon in the "Global Data Window" and
selecting the browse option from a pop-up menu. In this case, queries and other functions
of the Browser are peiiormed in the context of the root data set.

Two simple elements of our data model have been implemented and can be seen in the
Browser window. They are called "block" and "attribute" data types corresponding to the
blue and brown rectangles, respectively. Each value of a "block" refers to a collection of
data elements whereas each value of an "attribute" refers only to itself and is associated
with other data only through data types in which it is part. This pair of simple data types
can be used to represent a wide variety of data structures. The figure gives an abbreviated
glimpse of how signal data might be organized in the system. It can be observed that for
each trial, we have imported the time at which the trial was performed, the tarlget behavior,
variables summarizing actual behavior, and the multi-channel EEG time series. Structural
elements can be added or deletcd by using the mouse to access a menu in the "browsing"
area of the Browser window; this menu gives the user a choice of structural elements to
create, e.g., block or attribute, or deletion of a selected element. This facility also allows a
user to build query expressions and data extraction templates by creating data structures
from scratch and specifying values for some of the structural elements (see below).

Figures 4 a and b show the process of merging data sets imported for subject 7 into a
single "subj 7" data set. The figures also illustrate how data within the structures are
related. The left panel of Figure 4a reveals the data values contained in the "late" data set.
(For these figures, only the relevant portion of the Browser window is shown.) Clicking
on the triangles in the "block" (blue) and "attribute" (brown) icons reveals or hides data
values. The right panel of Figure 4a shows results after the "middle" data set was
d4raged fr,'m the 1"loal dataa widow iWt A.,h+U "atast L*._._ the DIs-.--

window and selecting the "merge" command. It can be observed that data from the
merged data sets came from two different "sessions", 2 and 3. Data corresponding to
session 3 was highlighted by clicking on its session number; the heavily underscore
indicates what was clicked, hence marking the root of the highlighting. in fact, the
relationship of any data value with other values can be seen by simply clicking on the
value. Figure 4b further illustrates this capability. In this figure, we have merged in the
"early" data set. Notice that the "early" data comes from session 2, the same session as
the "middle" dataset, and that data in the run block have been appropriately grouped;
specifically, the "middle" dataset corresponds to run number 4 and this run number is
grouped with run number 1, the "early" dataset's run number. In the left panei, we have
clicked on one of the trial .a, revealed by the heavy uiindirscore The highlighting shows1v
that the trial belongs to session 2, run 4, and shows all behavioral and EEG data associated
with it. (There is too much time series data to display on the screen so it remains hidden.)
The right panel shows the consequences of selecting a "target force" value. It can be seen
that the selected value belongs to trial 68, run 6, session 3 but, except for "target force",
no data values are selected following the "trials" block. This is because highlighting only
shows data that contains or is contained by selected data.

This sequence of figures shows that, by building data structures using the simplest
elements of our underlying data model, i.e., "blocks" and "attributes", our software has
captured an understanding of the relationships between data. It is this understanding that
enables our software to provide many of the benefits we have proposed, e.g., database
queries by content, extracting subsets of data while retaining relationships, traceable self
documenting data, insurance that only appropriate data is fed to a processing function, etc.

The final step in merging is to create a new data set in the database. This is done by
selecting "Emit Descriptor" in the Browser. The data set icon then appears in the "Global
Data Window"; we have labeled it "subj 7" (see far right of Figure 4b).

Isaii/reports/software/finail.xt -10- Final Technical Report

MA R89-APR94 SAMI'Il-HNOLOGY F49620-89-C-0049

Figures 5a and b show the process of extracting a subset from a data sct. The context is
that all data from an experiment has been imported into the system and merged into one
large data set. Now a user wishes to analyze a small subset of it. Imagine that "subj 7" is
this one large data set and the user wishes to look for fatigur effects in trials where the
subject was not required to make a response, i.e., trials where the "move type" attribute
has the value "nomove". To make "subi 7," the data set from which data will be extracted,
we bring up a Browser in the context of "subj 7" by clicking its icon in the "Global Data
Window" and selecting the "Browse" option. We now wish to set up a data structure that
will specify what data we wish to extract. Since our target data sets have exactly the same
structure as "subj 7", it is easiest to make a copy of its structure as a starting point. This is
done by selecting "Copy W/O Data" in the Browser. This produced the structure shown in
the left panel of Figure 5a. We then create values for "run" and "move type" that will select
out the desired data. The left panel shows appropriate values to select out "early",
"nomove" data, The software selects data that conforms to the values specified for each
structural element; if a value is not specified, any value is accepted. Choosing
"Extract(start)" launches the selection. The right panel shows the result of the extraction.
Two trials were found for which "move type" was "nornove" and "run" wac "1".
Extracting "middle" and "late" "nomove" data sets is done similarly by just changing the
value used for "session". Again, "Emit Descriptor" is used to place the new data sets into
the database.

In extraction, the full structure of the desired data set need riot be specified. For example,
the user may not interested in behavioral data other than "move type". Figure 5b
illustrates extracting "nomove" time series data, ignoring other behavioral data. The top
panel shows the extraction specification and the bo.ttom panel shows the re-,lt. The
software understands that the time series data would be unspecified without including the
enclosing structural elements, i.e., "task", "subject", "session", "run", and "trials". Two
trials from each run were found to have a value of "nomove" for "move type".

Figures 6a and b illustrate the process of querying the database. By now, we have created
several data sets with slightly different structure and data values. The upper left window
in Figure 6a shows a query to find all data sets which have the "target force" structural
element (see the "browser" area, the left panel). The query was launched by selecting
"Query (expandable)" from the browser menu. Results of the query appear in the "data
set holding" area to the right. By comparing the data sets retrieved with those currently in
the database (shown in the "Global Data Window" at the lower right side of the figure), it
can be observed that the query retrieves all data sets but those created by the extraction of
Figure 5b, as expected. Note that no data sets would have been found if "Query (fixed)"
were used since this query would require an exact match between the structure of a data set
and the query template. Similarly, we can set up a query by value: Figure 6b shows a
query to find all data sets which have data from run 1 and 6. Again, the "Global Data
Window" is shown for comparison. As expected, the "middle" data set was not retrieved
since it corresponds to run 4.

Figure 7 shows a prototype processing element for graphically examining data (see the
window labeled "Data Processing Schematic"). The data set to be viewed is simply
dragged from the "Global Data Window" and dropped onto tl'e input port. In this cas:z,
"subj 7" was dragged and dropped. After specifying what channels of data to display,
how they are to be displayed, and launching processing, the window labeled "Wave
Display" pops up. Time series can be added in separate windows or overlapped. Data
can also be deleted from the display. Two waveforms have been displayed, separately
and overlapped (see lower left window). The top wavcforn is from the "late" data set
while the one below it is from the "early" data set, same channel.

Isam/lreportslso ftwarelfinal.txt - 1 1- Final Technical Reporit

MAR89-APR94 SAMTOL"HNOLGY F49620-89-C-0049

Figures 8a and b illustrate setting up a more involved data-processing schematic and
performing neural network classification. For this demonstration, we have imported larger
subsets of data to create data sets "early nm", "middle nm", and "late nim" (see right panel
of Figure 8a). They consist of "nomove" trials only. Presumably, the three data sets
represent progressively increasing states of fatigue. We wish to compute RMS values in
the interval 100 msec to 350 msec from the beginning of each trial and traia a neural
network classifier to distinguish the three states of fatigue based on these values.

Figure 8a shows the data-processing schematic. The first step to construct it is to drag the
"classify" PE icon onto the "DPS window" from the palette of PE's (shown in Figure 2).
At this point, the user is requested to specify the number of categories 1t distinguish and
names for each of these; the input and output ports then appear. The three input ports
labeled "early", "middle", and "late" are for inputting data with which to train the neural
network. The fourth input port labeled "use" is for inputting data which the neural
network is to classify after it has been trained. The next step is to drag "rms" PEs onto the
"DPS window" and link their outputs to the inputs of the "classifier" PE by dragging
output placeholders over input ?laceholdcrs. Finally, the appropriate data sets are dragged
onto the "rms" PE input ports from the "Global Data Window" and the processing
schematic is launched.

Figure 8b shows the results. Intermediate results from the "rms" PEs, as well as the
output of the "classify" PE, appear as new data sets in the "Global Data Window" (the
lower right panel, data sets on the right). The upper left panel shows the output of the
"rms" PE after processing the "late nm" data set. It can be observed that the time series
have been correctly summarized by a single value for each channel. The yellow
highlighting shows the "rms" values derived from data recorded during the 109th trial; the
three "featval" values correspond to three different channels. The "classify" PE extracts
the substructure consisting of "trials", "feature", "feat_val", and "class" structural
elements. Hence, all signal transformation software that generate data sets for input to the
"classify" PE must have this substructure. The lower left panel shows the contents of the
"classify" PE output, Note that we had used the "late nm" data set as input to the "use"
port so that each sample should have been classified as "late". The one sample incorrectly
classified as "early" is highlighted; one error out of ten is consistent with the error rate of'
0.9 reported for training under the structural element "Class Performance". in actual use,
an independent data set would be placed in the "use" port to evaluate the generalization
capability of the trained neural network.

Figure 9 illustrates heritage capabilities. Browsing the heritage of a data set is one of the
options available in a pop up menu that is accessed by clicking over a data set in the
"Global Data Window". The heritage graph of Figure 9 shows the data-processing steps
(thick boarders) and data sets (thin boarders) involh,.d in obtaining the classification
result. It clearly shows that the "use rms" data set is no different from the "late rms" data
set. The information required to construct this graph is automatically recorded each time a
PE is used. Hence, data sets are self documenting. A heritage graph can be selected and
dragged into a DPS window. This capability allows users to easily set up processing
schematics by simply browsing the heritage of an example of the data set they wish to
create.

Conclusions

The prototype proved that our data model and data comparison and extraction functions
were functionally sound. It also showed that the mechanisms for communicating data

/sam/reports/software/final.t.xt -12- Final Technical Report

MAR89-APR94 SAM 'IECHNO1LfGY F49620-89-C-0049

between signal-processing functions were sound. The main problem was that system
response was slow, even with the small datasets we used in the demonstration. Hence, it
was clear that our design needed to be analyzed to identify how system performance could
be improved. Our analysis is discussed in the next section.

EVALUATION AND EXTENSION OF THE PROTOTYPE

Code Refinement for Speed

In analyzing our prototype, we found that poor system performance was primarily caused
by the operations used to compare data structures and query the database. The effects
were widespread since these operations are used, not only in explicit requests by users,
but also by signal-processing functions accessing data and extracting the form of data they
need from the database. Our prototype implementation uses a brute-force algorithm to
exhaustively applying query expressions to each dataset in the system. Our new design
improves the efficiency of comparing data structures and scanning the database by
optimally breaking the algorithm into functional components and re-partitioning our object-
oriented design to minimize unnecessary and redundant operations. Specifically, our new
design allows the programmer to view each level in the hierarchical data model as a
dimension of a multidimensional array. It provides programmer tools to build a map of
each data element in terms of this array so that, once the map is built, storage and retrieval
is virtually immediate. From these structural changes to ou!' data model and support
functions, we expect a speed-up of at least two orders of magnitude. In addition, to
maimIi-te j.,, ability to v,•,,'t our code to ,othe commercial CID, our imp.icamcntatio u.._,

not use the build-in query facilities provided by the ObjectStore database. Using them
will significantly simplify our code and may provide improv-d system performance.

Software Ports

We have completed an X-window/Motif port of most of our digital signal-processing
software. This was a necessary first step towards integrating our current signaL-
processing software into the SIGNET system because the software used proprietary
Masscomp functions. Below, we describe the three major applications and show screen
dumps from the ported versions.

Data Reviewer

Data Reviewer (Figure 10) provides means to review and annotate recoided signals.
Researchers are able to label any signal segment with pre-defined labels, e.g., eye-blink
artifact. This will be generalized to handle user defined labels. It is also possible to
temporarily filter, decimate, or interpolate signals using a selection of filters suitable for
EEG research. This will be generalized to apply user-defined filters. Other functions
include display scaling, choosing any subset of channels to display (up to limitations of
screen size), and jumping to any portion of a signal file. Labels in the data files can be used
by other programs to trigger special processing such as artifact rejection and artifact
minimization filtering or to select out subsets of signal segments for further analysis. This
latter function is provided by "Data Subdivider" described below.

Data Subdivider

This application provides means to divide the data of an experiment into subsets for
hypothesis testing using any of the following alone or in combination: variables which

/sam/reportsisoftware/fi nal. txt -13- Final Technical Report

MAR89-APR94 SAMT-CHNOLO(GY F49620-89-C-0049

characterize the circumstances in which signals were recorded, labels placed in "Data
Reviewer", and characteristics of the signals themselves such as power in a specific
passband. Data Subdivider does this by allowing researchers to numerically or graphically
specify values or ranges for these criteria, and then immediately view the effects of their
decision on histograms showing the numbers of signal segments satisfying the criteria
(Figure 11). To aid researchers in specifying appropriate criteria, t- and F-statistics are
computed. The software writes out a file which contains descriptions of the constituent
trials and information about the selection criteria. These output files are used to guide other
programs in retrieving data from the recording that fulfills specific selection criteria. With
this functionality, Data Subdivider provides the means by which researchers can insure
that the hypotheses they aim to test are actually those that are tested. It does this by
providing the means to eliminate sources of variance in the data that are irrelevant to the
hypothesis being tested.

EXPLORE

The purpose of EXPLORE is to provide the researcher with graphical tools to review and
compare processed data using a number of graphical representations. EXPLORE has the
ability to make 2-d plots, color-coded topographical maps on 2-D projected spherical
surfaces, and specialized plots such as spatial cross-covariance (Figure 12). Researchers
are able to obtain numerical read-outs of function values on 2-D plots. Plots can be sized,
placed, moved, and superimposed on other plots anywhere on the screen using a mouse,
much like graphical entities in object-oriented drawing software. Researchers can flexibly
and easily scale plots, label axes, and obtain print outs.

Integration with 3-D Visualization Software

One goal of SIGNET was to integrate our database and data modeling system into a
numerical analysis and 3-D visualization system such as Explorer from Silicon Graphics,
Inc. or AVS from AVS, Inc. We chose to study integration with Explorer from Silicon
Graphics because Explorer provides the most advanced visualization functionality and the
best distributed processing environment.

We have completed our investigation into integration with the SGI Explorer system and
have concluded that several approaches are possible. The tightest degree of integration
would be a very close coupling between Explorer, the SIGNET data model and the
ObjectStore database. This would involve replacing Explorer's data access facilities with
the SIGNET data model. The most flexible degree of integration would not alter
Explorer's data modeling facilities. Integration between Explorer modules would be
accomplished by providing import/export functions which would provide access between
each Explorer modu½':_ and the SIGNET data model. These import/export functions would
convert data in the SIGNET database into and out of the Explorer data management
system. This is the more likely route for us to take in Phase III since tightly coupling
Explorer and SIGNET would require considerable support from Silicon Graphics Inc. and
Object Design.

OBJECT-ORIENTED DATABASE EVALUATION

We evaluated six object-oriented databases: Objectivity from Objectivity, Inc.; Objectstore
from Object Design, Inc.; Versant from Versant Object Technology; Gemstone from

/sam/reports/softwarelfinal. txt -14- Final Technical Report

MAR89-APR94 SAM ITCHNOLOGY F49620-89-C-0049

Servio Corp.; Ontos from Ontologic, Inc.; and Orion from Itasca Systems, Inc.
Nineteen issues were evaluated. For each issue, products were rated on a scale of 0 to 10
with 0 denoting unacceptable and 10 denoting excellent. Table I summarizes the results.
Each issue is described briefly below. Object Design's Objectstore was the clear winner..

TABLE 1: Object Oriented Database Evaluation Summary 1

Issue Weighting Object Oriented Database Product

Objectivity ObjectStore Versant Gemstone Ontos Orion

PC Platform 8 4 7 1 5 9 0

Complete C++ 10 5 10 8 2 7 1

Development Environment 7 10 6 8 8 8 0

Conceptual Simplicity 10 3 10 5 1 5 2

Qttality oflDML 10 7 9 2 5 4 6

Size 7 10 7 10 10 10 10

Schem Evolution 6 5 7 9 0 7 10

Conacumenzy Control 5 i0 10 0 10 10 0

Versioning 10 10 10 10 0 9 10

Indexirig 8 3 8 8 5 8 5

Prefornianc.• 8 4 8 3 ? 5 ?

Database Browser 10 9 8 6 8 8 0

Schema Designer 10 8 10 6 8 7 5

Other Goodies 10 0 8 5 3 3 0

Development Plicm 10 6 7 3 8 7 9

Resale Price 10 9 5 1 ? 9 ?

Support Quality 10 3 10 8 8 8 ?
i 'oqt of Prndi im,- Fit_;,e In 4 6 9

Standarls 10 8 10 6 3 2 0
•: Weighted Average Score2 -6.•2 ""8.3 T 5.7 1 5.3 6.9 4.3

Weighted Average Range3 -- " .8-6.4 8.3-8.3 5.-5.7 4.8-5.8 6i.9-6.9 3.6-5.,-)
I All numerical entries are ratings on a scale of 0 to 10 with 0 being low.

2 Values that could not be determirL.A. (?), were simply ignored.
.3 The lower bound was computed by assuming indeterminate values were 0, upper bounds by assuming 10.

/sa.n/reports/softwaze/final. tx t -15- Fiinna Tcchniical Repoh

MAR89-APR94 SAM TECHWLOGY F49620-89-C-0049

Description of Issues in Table I

PC Platform: Are there plans for porting the product to the IBM-PC platform?
Ultimately, we would like to run SIGNET on low-cost IBM-PC compatibles.

Complete C++: How well does the product support the C++ language? For example,
some did not support multiple inheritance. All but Objectstore did not support
parameterized types, a powerful, labor saving feature.

Development Environment: What software development environments can be used with
the product? We were looking for the most flexibility in choosing environments.

Conceptual Simplicity: How simple is it to store something in the database and navigate
through the database? We sought an approach that could be easily understood to
minimize programmer learning curves and maximize maintainability of the software code.

Quality of Data Manipulation Language (DML): The DML is the facility for querying the
database and maintaining the integrity of relationships between objects. How powerful is
the DML and is it conceptually simple and easy to use?

Size: Is the maximum database size restrictive?

Schema Evolution: When the structural design of objects change, how easy is it to update
old data in the database to this new structure?

Concurrency Co.ntro.: There arc two co,,tro Optiuons, pessiristic and uptjhiistic. W ith
pessimistic concurrency control, objects in use are locked out from being used by other
users until checked back into the database. Optimistic control is better suited to our
application since it involves less computational overhead and the risk of conflict is low.

Versioning: Does the product support different versions of an object and can the
versioning history have multiple branches?

Indexing: How efficiently can the product handle standard, non-object, data? We were
looking for the inclusion of efficient algorithms to deal with standard data, i.e., B-trees
and hash tables.

Performance: How fast is data access?

Data Browser How good are the facilities for examining the contents of the database?

Schema Designer: How good are the facilities for implementing the structural design of
objects with output to C++?

Other Goodies: Are there other helpful tools that come with the product, e.g., third party
software libraries.

Development Price: Price of the product for software developers.

Resale Price: Price of run-time licensing when SIGNET is packaged and sold.

Support Quality: The responsiveness of their technical support group.

/sarn/reportslsoftware/final.txt -16- Final Technical Report

MARS9-APR94 SA:T T33CINOqflGY F49620-89-C-0049

Cost of Product Failure: How difficult would it be to convert our code to work with
another company's product in the event the product fails in the market place?

Standards: How committed is the company to industry standards?

CONCLUSIONS

V.: have laid the groundwork for creating a multidimensional signal-processing software
workbench based on an object-oriented database. We have observed that the major
drawback to our initial design was system response performance. The major factors
causing this have been identified and solutions have been designed. To signifizantly
improve system response performance, a few major structural changes to the code will
need to be implemented. Integrating our exploratory signal analysis applications into the
SIGNET framework would best be done following these structural changes. We must
seek further funding to complete these steps.

REFERENCES

1. Gevins, A.S., Bressler, S.L., Cutillo, B.A., Illes, J., Fowler-White, R.M.,
Miller, J., Stern, J., Jex, H. (1990) "Effects of prolonged mental work on
functional brain topography.," EEG clin. Neurophysiol., 76, pp. 339-350.

2. Gevins, A.S., Cutillo, B.A., Fowler-White, R.M., Illes, J. & Bressler, S.L.
(19ro),, "Ne-uru--y-z--•/: - pattiefiz of opeiitoneid fatigue: preliminary results,'.
NATO/AGARD Conference Proceedings, 432, pp. 22-1 to 22-7.

4. Eckel, B., (1989), Using C+ +, Osborne McGraw-Hill, Berkeley, CA.

5. Rumbaugh, J., Blaha, M.., Premerlani, W., Eddy, F., and Lorensen, W., (1991),
Object-Oriented Modeling and Design, Prentice Hall, New Jersey.

6. Stroustrup, B., (1991), The C++ Programming Language, 2nd ed., Addison-
Wesley Publishing Co.

/sam/lrportslsoftware/final.txt -17- Final Technical Report

MAR89-APR94 SAMT H2NOWGY F49620-89-C-0049

APPENDIX A: Figures

Figure 1...A-
Figure 2 .. A-2
Figure 3 .. A-3
Figure 4a ... A-4
Figure 4b .. A-5
Figue 5a ... A-6
Figure 5b .. A-7
Figure 6a ... A-8
Figure 6b .. A-9
Figure 7 .. A-10
Figure 8a ... A-1I
Figure 8b .. A-12
Figure 9 .. A-13
Figure 10 .. A-14
Figure 11 A-16
Figure 12 .. A-18

/sam/reports/software/final.txt -18- Final Technical Report

NIAR89APR94SANI ['LiiNOI,6 F-00 I4920-89 ('-((49

-IA-

CD

a)~ C)

-4-

Ls. :o.

.~~~~~ n

MARS9-APR94 SAM TEdI INCI (XY F4%620 89-C-0049

2m n n ~ wys~~tifi~~. n r c- - r ~ S ' ~

S .t¾ 4 A I I.,~

0 -.

h, j '7MT

Ai IN'T l .~
VV I

T~ Uj

kanhreprtssof'.~'iiefind tt A-2 inalTecnicl Rpoo

NIA1~-APR) ~ ,\NI 1 1)I ~ 119o2O 89 C.-(109

C d

Ll Q/

Cz

1. .*. L.

10 N7F, I. u v L
A- -'3

MARS9-APR94 SAM TECHINOLOGY "4920-89-C-00l19

CL

sCL

___ LI ~.2.2

mil
Eli

A: rcu

/ýam/relx~rts/software/final~tx A- lT chnclRpr

MA R89- APRSAM 1'1: I• I LOt Y 1..;iOGi :') 89-'-(x'19

7'0
Urut

"/i

2

SB FIV

E °)

LU3~ 0 -L/i V7 -- V
-, -) C- 0. C4 ;••0-F- >

1C) C)-

80.C

0r r CA7c

•j n il- l a . _b u CBB~ ~ CWo->°=

-r- m .C _ 'a.i= u"
/$•111 O ix~ t~l\,llt,'-nit.t.-

iiii"]'ch i;l].trll

*MAR89-APR94 SAM TECH4NOLOGY F49620-89-C-00)49

IA
0 0

440 OF

X a"

0

(U

S0 00

C)!.

01t

£~

lsarn/rcports/softwarelflinal .txt A-6 Final Technical Report

MAR89-APR94 SAM TECHNOLOGY F4962(a 99-C-004

__________~~~~rk on____ ___ rwigp 4atasvit subj 7

r -i

Figure 5b: Extracting a Subset of Data.
The top panel shows a minimal data description for extracting
"nomove" data, including time series data but ignoring other data.
The bottom panel shows the extraction rcsult.

Isamn/repmits/software/rinal txt A-7 Final Technical Report

MAR89-APR94 SAM TECH"NOLOGY F49620-89-C-0049

-. V_

c CL-- --- ----- --- ---------]7
-0

L2

/sar~orsiso~wae/f~aI.AX inalTcciiicl Rpor

MAR89-APR94 SAM TEC-HNOLOGjY F-49620-89-C-0049

A0
0

S>

C4~

__ C1u

41 ol

/sani/eprts/oft~vae/riiil~txt -9 Fin l Tcncl Rpr

MARS9t-APR94 SAM TECHNOLOGY F49620-89-C-0049

"iI..........

Hq

*- Cu 1- o

c-- (4

OC

Esmrprssfwr'ia tx -OFnlTcnclRpr

NMARSI,-APR94 SAM TIXI-INOLOGY F-4962O-89-C-OO41)

V.L

IDI

Wm-- 0

L. .

K 0

C-3 11W

fsam/reporis/softwarc/Iinial. txt A-1 1 F~inal Technical Report

MA R89-APR94 SAM TI3CtnNOLOGY F49620-89-C-0049

......... .. , .. •

-72

S'i
L

4- [J L'a
i f T

o.' I

Ii

EI 1 Ii L

'sa tintports'so-tware final iIt A-I2 Iii I Clfl T1hi.t j{tjx[

MAR89-APR94 SAM ITEOINOLOGY F-1962o-8sC-049

r ii heritage at'dataset

bomw=Carrel)

eary Eo) Iendl m

IearlIyu M middle s erm Ue p,

Res- t of cla sif

17,~

Figure 9: Heritage.
The figure displays the processing history leading up to the "Result
of claýssify" data set. The history is automatically complied at each
piocessing stage.

Isarnlreportslsoftware/finall) A-i3 Final Technical Report

Figure 10: Screen dump from Data Reviewer ported to X-windows.
The display shows data recorded during a single task trial consisting of
two vhstial stimuli, marked by the "pdStiml" and "pdStim2" labels at the
bottom of the figure, and a response, marked by the "Respn" label. Time
is showýn ini seconu's. An artifact type is selected by clicking a mouse
bu tton oa one of the labels at the top. Then the artifact is selected by
clicking on the beginning and end of an artifact. In the example show,
the user has used the label VEM to mark out two instances of vertical
eye artifizct, specifically, eye blinks. The number of channels, the time

and mp~~dcscals, .d-any -t-e aspct hofh displ~ay are alterable
using -.he icons shown at the right and by commands entered through the
keyboardJ. The data can be temporarily filtered by a wide variety of IIR
filters.

/sarn/reports/softwarce/fina1.txt A- 14 Final Technical Report

*1

V
I
I

32

I
I I

I z
0

-

-� I>11

I 0L.C-

I..6.

T1� 0
L

I

L �1

3

-I

- I'

1

� .1.I �

L9�e-4

- "41
- L.

NUPAP9 ýSAMTECHNOL00Y ~

Figure 11: Screen dump from Data Subdivider ported to Motif/X-windows.
The researcher is selecting out a subset of trials from three different experimental
conditions. In each condition, subjects had performed a task requiring d,.em to hold one,
two, or three items in memory and update this memory as the task went on. The upper
right panel shows the three condition names selected by the researcher ("mernloadl",
etc.) and the interval of data during a task trial which is of interest (-0.'.; to 1 second
centered on "psStim2"), Data Subdivider selects that subset of trialF where the
electrophysiological data recorded within this interval is not conta.-ninated b3
undesirable signals, such as eye-blink, as specified in Data Reviewer. It is from this
stbset that the data is further subdivided according to other variables as specified in the
lower right panel, "RT" (reaction time), "outcome" (whether or not the subject's i, sponse
was correct), and "trialtype" (in this example, this indexes the memory load required in
the trial). In the three panels on the left, the researcher has selected a set of ta.•k trials
that do not differ in reaction time across the three conditions. The height ,i; a bar
represents the number of observations (trials) of the class that are in the correspuding
interval of the x-axis (reaction times). The tiny squares represent individua
observations; their vertical positions are set so that all observations can be. viewed on the
plot and are otherwise unrelated to bar graph heights. Green squares indicate those
trials that are included in the subset of trials while red squares indicate those that are
excluded. An ANOVA is performed to compare the resulting distributions. Using this
tool, a researcher can insure that the data he or she is testing are actually related to the
hypothesis he or she intends and are not contaminated by unrelated sources of
uncontrolled experimental variance.

/sam/reports/softwarelfrnal.txt A-16 Final Technical Report

MARB9-AI'R94- SAM PLCI INOLOGY 1:49620ý-99 C-004-9

~ItI

.54f

Me

0

* 14Mea JJ8fh4II
itvi

4:i~i4:

4' p- 4C

II

A-1 Fia*ecncl txr

Figure 12: Screen dump from EXPLORE ported to Motif/X-windows.
The researcher is examining line plots and topographic maps of power spectra on
the right and, on the left, spatially enhanced (a 3-D surface Laplacian estimate)
averaged evoked brain signals time locked to "pdStim2" as specified in Data
Subdivider (Figure 11). The topographic maps were derived from 32-channel
recordings and data from a few of these channels are shown in the lirne plots;
channel names appear at the top of the plots. The researcher has arranged the plots
to easily compare temporal and spectral differences and spatial distributional
differences of these two quantities between the three memory load conditions as
described in the caption for Figure 11. The window at the upper right comer
labeled "data sets" provides a means to select which data set(s) to load into a plot
while the window at the lower right labeled "channels" provides a means to select
which channel. The window in the centcr labelcd "Filter" provides a selection of
filters that can be reversibly applied to the data. Scaling for the topographic maps
are shown in the two small windows labeled "cmap". Finally, the window at the
lower left labeled "plot descriptor" shows detailed information about the data
plotted in the line-plot for channel 01. The program facilitates instant creation of
an analysis and display according to the immediate interests of the researcher.
Many analysis functions and options, and an unlimited variety of display
organizations (up to the limit of screen resolution), are available through pop-up
menus.

Ioam/ poits/softwam/fina.Utt A-18 Final Technical Report

N11~.8*-l~P)4SAMI IT(IINOIX1.01 I4902O-89-C-(XN9

77777.7 0

--

A"E
I1oi

isilrl~tikfwart finial txt A-19 Final Technical Repoil

